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Abstract: Nowadays, high precision and reliability of Global Navigation Satellite Systems are increas-
ingly important in positioning applications. Machine Learning is used to improve the performance
of the GSHARP PPP algorithm by reducing the effect of multipath on GNSS measurements. The
clustering analysis is conducted on the primary GNSS data points with the goal of discovering and
analyzing patterns in the multipath interference. This study represents an early attempt to apply Al
to the GSHARP PPP algorithm. Since Lightweight Machine Learning is used in this research, it is
easier to integrate and might serve as a stepping stone to the application of advanced deep learning.
About 50 hours of data collected from different environments (e.g. highways and urban areas) serves
as the training data for these algorithms which ensures their robustness and real-world applicability.
The use of Machine Learning clustering inside the PPP algorithm serves as a way to improve its
performance against multipath effects, as well as provide a platform for subsequent development of
precision GNSS systems through Al technologies.
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1. Introduction

Today, global navigation satellite systems (GNSS) are an important tool for deter-
mining the location and time of any point on earth. Their use in urban and semi-urban
environments is constrained due to multipath effects which occur when a satellite signal
reflects or diffracts off the buildings surrounding before it reaches the receiver through
several paths. This causes a significant impact on code measurement and phase error which
poses a great challenge to the accuracy of the GNSS system, especially for applications
requiring high precision.

Multipath interference is particularly challenging when signals are received from
low elevation satellites affected by nearby structures that cause non-line-of-sight (NLOS)
signals that distort the direct or line-of-sight (LOS) signal. These signals induce variations
in amplitude, delay, and phase, which can significantly alter the integrity of the received
signal [1].

Strategies to mitigate multipath have historically focused on improvements from
receiver design and antenna location or type, as discussed extensively in the literature.
However, these solutions may be insufficient or impractical in certain contexts. Although
recent investigations have expanded the toolkit for addressing multipath effects, incor-
porating sophisticated data processing techniques directly within receiver systems as the
use of different Delay Lock Loops (DLL) estimators, Code-Minus-Carrier (CMC)-based
approaches [2] or continuous time-series C/ Ny [3], even a Convolutional Neural Network
(CNN) that automatically extracts features and applies a binary classifier on the final layers
of the network from raw correlator data in the form of doppler image tensors and code
delay offsets [4].
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However, there are also recent approaches from the positioning algorithm to mitigate
the effects of multipath in GNSS signals, which have served as a basis for this project as
will be seen below. In particular, we can observe approaches using CMC only on signals
from the Indian satellite constellation, NavIC [5], and other approaches using Code Rate
Consistency (CRC), a term that we will explain in depth later on, together with satellite
elevation, C/ Ny and pseudorange residuals [6].

2. Materials and Methods

GPS measurements from L1C, L2C and L5Q) signals, Galileo measurements from E1C,
E5aQ and E5bQ signals and BeiDou measurements from B1C and B2Ap signals have been
used in this study. They were collected, mainly in kinematic conditions, in the surroundings
and the center of Madrid, Spain. These data belong to several data campaigns from different
projects from February 2023 to January 2024 and they have been reused for the analysis
presented in this study. The data available is about 50 hours in total. Due to the complexity
of GNSS signals and environments, a single feature is not enough to classify an observation.
Thus, a set of features is needed to appropriately represent the multipath. To process this
data, we utilize GSharp PPP, a PPP algorithm designed by GMV [7]. When these data
are processed through GSharp PPP we obtain a combination of different features, such as
pseudorange, phase, Doppler shift, signal-to-noise ratio (SNR), elevation, pseudorange
residuals and ionospheric delay calculated from the previous epoch. With all these features
we can set the base parameters for any satellite of any constellation and frequency.

2.1. Feature Engineering

A good selection of features and removal of irrelevant or redundant ones in ma-
chine learning (ML) is key to handling high-dimensional data and incorporating domain
knowledge can help with that, reducing computation time and model complexity improv-
ing learning accuracy, and facilitating a better understanding of the model or data [8,9].
Therefore, we need to conscientiously select what features will improve the clustering
accuracy.

1. SNR: It is an important metric that helps determine the quality of a received signal
against the background noise level. The original meaning of this term is the ratio of
the power of the signal versus the power of the noise influencing signal clarity and
integrity. The SNR values higher than a certain threshold are often associated with
having a clear signal with little interference and this is very important for successful
data transmission and receiving. In high SNR environments, it is easier for GNSS
receivers to generate accurate observables from the tracked signals. Nonetheless,
during nominally fluctuating noise conditions or in the presence of other signals
that can interfere or create noise modification, the signal can be masked or falsely
magnified; implying that the quality of the observables will evolve together with the
C/NO in a similar way by destructive and constructive multipath.

2. Elevation Angle: It is a traditional and effective way to set up weighting coefficients
in the Processing SWs to diminish the role of multipath and NLOS signal reception in
positioning. As an example, satellite signals which are located at a higher elevation
angle usually have a smaller chance to be blocked and reflected by buildings. However,
this cannot be fully generalized. Because of the width and height of buildings in urban
centers, satellite signals at high elevation angles may be NLOS signals, while signals
at low elevation angles may indeed be direct signals.

3. Code Residuals: The code residuals of a least square PVT solution where position,
clock bias, inter-system biases and inter-frequency biases are estimated (in snapshot
mode) has been used also as a feature. Checks to detect residual outliers is also a
traditional method for trying to discard misleading measurements, although they
show limited performance for that goal under conditions with low number of satellites.
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Despite this fact, this feature was considered interesting to be included in the analysis
and training.

Ionospheric Delay: GNSS signals are delayed as they travel through the ionosphere,
a part of Earth’s atmosphere ionized by solar radiation. This delay varies with
the electron density, which changes with solar activity and the time of day. The
ionosphere is dispersive, causing delays that differ by signal frequency. As we do
not know the current value of the Ionospheric delay we use the value of the previous
epoch calculated by the GSharp algorithm, which provides an accurate ionospheric
delay observation in near-real time because it receives ionospheric corrections from
the GSharp Correction Service. The delay does not change as fast as the algorithm
calculates a position, 10 Hz, so we can ensure low error the estimation due to the fact
of using ionospheric delay from the previous epoch.

ACMC: A common approach to isolate multipath is the CMC metric (Carrier Minus
Code). Due to the common terms in the pseudorange and phase equations, they will
cancel each other when subtracted with the exception of the ionosphere delay (and
carrier phase ambiguity), which for phase measurements suffers negative delay and
for code measurements positive delay, being modeled for a satellite s, a frequency i,
and an epoch k as:

CMCjy = pjx — i = 2L + NjjAi + MP;, — mpi + €] — 0yl 1)

where I?, is the ionospheric delay in meters, N7, and A; are the integer ambiguity
expressed in cycles and the wavelength of frequency i, leaving the remaining terms
(MP; K eZ  and mp? ke s ; 1) representing the multipath and thermal noise errors in code
and phase measurements, all in meters.

Since we have the ionospheric delay, we could simply subtract twice the delay from
1, but as seen in Caamano et al., that new feature known as CMCpy,, has a linear
combination of the phase ambiguities from the two frequencies. Therefore, it is
preferred to use the rate of change of the CMC, which means that the ionospheric
delay is not completely eliminated and that you accumulate twice the change of the
ionospheric delay (21) besides the rate of noise and multipath (¢ and MP). But as
they remark, the ionospheric rate component is negligible in nominal conditions. The
ACMC equation is expressed as follows:

1 o
ACMC = 1 (CMCy — CMCy 1) ~ 2l + MPy + ¢y, )

and, in addition, we propose the alternative of making use of the absolute value of
ACMC to more effectively highlight significant fluctuations and mitigate the impact
of directional changes in the ionospheric delay and other error components, thus
providing a clearer indication of anomalies in GNSS signal integrity.

CRC: As seen in Wang et al., the interference of multipath/NLOS signal on the
frequency control loop is less than that on the code tracking loop, the consistency
between the pseudorange change rate and the Doppler frequency shift can reflect the
degree of reflective signal interference. It can be expressed as:

CRC = |Ap—p - At|, 3)

where Ap stands for the pseudorange variation and At for the time interval. As per
Doppler effect, the pseudorange rate p is calculated from the Doppler shift term:

0=\ fp, (4)

where the wavelength of frequency i is represented as A; and the Doppler shift is fp,
in Hz.
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The rest of the features can be omitted for the reasons explained above, because it
contains irrelevant or redundant data.

2.2. K-Means Clustering Algorithm

The K-Means algorithm groups the data by attempting to separate the samples into n
groups of equal variance, minimizing a criterion known as the sum of inertia or sum of
squares within a cluster, which can be modeled as follows:

S 2
gggg(\\xl will*), (5)

where 7 is the number of samples, /; is the mean of the samples of a cluster C and x;
is the sample.

The K-Means algorithm needs, previously to start with, the number of clusters k.
Although we could differentiate 2 or 3 types of GNSS signals in reference to multipath
interference (LOS, multipath and/or NLOS), that might not be the best choice to establish
the number of clusters, so we will need to set some experiments trying different values for
k. In addition, we will have to perform an hyperparameters optimization to find the most
suitable ones to increase the accuracy.

To evaluate the resulting K-Means model, we propose the use of 3 metrics widely used
in unsupervised learning, such as the Silhouette Coefficient, the Davies—Bouldin index
(DBI) and the Calinski-Harabasz index (CHI).

e Silhouette Coefficient: It evaluates the quality of clustering based on the cohesion and
separation of clusters. It is calculated for each point and measures its affinity to its
own cluster and to the nearest neighboring clusters. A value close to 1 indicates a high
affinity, while a value close to -1 indicates that the point could be better assigned to
another cluster. This metric is calculated based on the following formula:

max(a,b)’
where a represents the average intracluster distance and b represents the average
distance to the nearest cluster.

e  DBI: Itis based on the distance between centroids and the dispersion within clusters. A
lower value of the metric indicates a better quality of the clusters, with more compact
and well-separated groups. It is calculated based on the following formulas:

1 k
DBI = - R;: 7
ki;rgl%x ijs (7)
i +5;
Ri]-: ld ]/ (®)

ij
where k is the number of clusters, s is the average distance between each point and
the centroid and d;; is the distance between centroid i and j.

e CHI: Also known as the variance ratio criterion, it evaluates the quality of clustering
by comparing the dispersion between clusters with the dispersion within each cluster.
A higher value of this index indicates greater separation between clusters and lower
dispersion within clusters, which is associated with better clustering quality. It can be
calculated using the following formulas:

BCSS/(k—1)

CHI = WCSS/(n—k)’

©)

k
BCSS = Y nillci — ¢, (10)
i=1
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k
wess=Y" Y lx—cl? (11)
i=1xeC;
where n; is the number of points in cluster C;, c; is the centroid of C;, and c is the
overall centroid of the data.

3. Results
3.1. Analysis of K-Means Clustering for Multipath Detection

As indicated before, it is not that simple to define the optimal number of clusters
as basing one’s knowledge on domain knowledge. Hence, the set of experiments for the
different number of clusters, 2 to 6, were created. This section will therefore compare the
experiments to make sure that the right number of clusters can detect multipath. Having
discussed about how K-means algorithm works with different number of clusters, we will
look into the performances and see the implications of each of different experimental setup.

3.1.1. Data Analysis

The data used for the experiments correspond to 37 GNSS scenarios in different types
of environments, from highway to deep urban, and have been recorded for GPS, GAL and
BDS constellations. Because of different complex environments the data needs a previous
analysis, to determine the amount of outliers we can preserve or the scalers to be used
before training the model.

Figure 1 illustrates the box plots and density functions of those features which are
generated as the model. The figures depict the distribution of typical and the most severe
values for every single parameter. These outliers are seen mainly in a number of features, in
particular delta CMC, and CRC. These inconsistencies prevent us from showing the entire
distribution in the delta CMC and CRC graphs because they are noticeable in both graphs.
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Figure 1. Box plot and Density plot. (a) Box plots illustrate the variability and spread of features. (b)
Density plots highlight the frequency distribution for each feature.

Although the model has no knowledge of which satellite ID or constellation a given
observation belongs to, it is important to analyze how the measurements are distributed
among the different constellations and IDs, in order to avoid an imbalance that could
lead to discrimination of certain observations based on which constellation or satellite
ID they come from. In Figure 2 we can see how, although the number of observations
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does not coincide between IDs or between constellations, there is not a large imbalance
between features for which we need to take balancing measures, such as under-sampling
or over-sampling.
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Figure 2. Satellite visibility distribution across GPS (blue), Galileo (orange), and BDS (green) constel-
lations. This histogram illustrates the number of observations per satellite, highlighting the variability
in data availability among different satellites within each constellation.

The next step in data processing is to normalize or scale the data to ensure that the
different features are not overdimensioned due to data scaling. For this purpose, the
following have been applied: standard scalers, scalers that are resistant to outliers (if
extreme values are not desired), or scalers that make ratio of values within the range
between minimum and maximum, maintaining the distance between all values regardless
of their extreme.

3.1.2. Cluster Analysis

To determine the optimal number of clusters (k), we analyzed various metrics across
different clustering configurations as shown in table 1 for clustering evaluation, the CHI,
DBI, and Silhouette Coefficient.

The CHI metric, a key factor assessing the integrity of clusters internally, is bounded
and also quite important for optimizing hyperparameters, however, it lacks a maximum
value, so it is not good at comparing experiments. It displays general characteristics but
particular conclusions should be made within the context of each experiment, not based on
general assumption.

On the contrary, DBI gives a measurement of the quality of clustering directly with the
lowest value representing best clustering distribution. Here, the 5-cluster model, possessing
the lowest DBI value (0.836727) is recommended as the best model to distinguish the
different models compared.

Along with this, the Silhouette Coefficient of the 5 cluster model is higher than the
6 clusters and 4 clusters, thus indicating better cooperation within the same clusters and
separation of others. This item echoes the DBI findings, thus supporting the uptake of the
5-cluster model which will help in clearly and distinctly clustering the data by choice.

Table 1. Model metrics for each experiment.

Number of Clusters CHI DBI Silhouette Coefficient
2 Clusters 58711400 0.999 0.457
3 Clusters 92425300 0917 0.380
4 Clusters 93903700 0.963 0.357
5 Clusters 90250400 0.836 0.368
6 Clusters 83099200 0.925 0.325




70f 10

3.1.3. Model Analysis

As we have selected k as 5 based on the DBI metric and because of domain knowledge
we separate the signal types into 2 or 3 (LOS, multipath and/or NLOS), we understand
the results as those 3 signal types but with other additional features or different degrees of
multipath affection up to NLOS.

Based on the complete dataset of observations for the different scenarios, we can
analyze in a general way the performance of the model. So, if we have a look at Figure 3
we can see the distribution of all these measurements once they have been classified along
the entire dataset.

Cluster 0 Cluster 4

Cluster 3

Cluster 1

Cluster 2

Figure 3. Cluster distribution.

We can further assess the quality of the clusters by examining the relationships between
key features of the dataset. A pairwise comparison between features highlights the degree
of separation achieved by the clustering process and provides insights into the internal
structure of the data, helping validate whether the clusters are meaningful in terms of
physical interpretation and contributing to the model’s explainability.

Figure 4 illustrates the relationships between the different features and their corre-
sponding clusters, with the diagonal showing the distribution of each feature by cluster,
and the off-diagonal plots representing pairwise comparisons. The matrix is symmetric,
meaning the lower and upper halves contain the same information with reversed axes,
making it easier to observe the segregation performed by the model, as supported by the
DBI metric discussed earlier.

Focusing on the elevation-SNR relationship, a traditional metric in GNSS signal
analysis, we infer that Cluster 3 groups the cleaner LOS observations, with high elevation
and SNR values, indicating minimal multipath interference. Clusters 1 and 2, although at
lower elevations, maintain high SNR values, suggesting relatively clean signals with some
level of degradation, likely due to lower-elevation LOS with minor multipath interference.

In contrast, Clusters 0 and 4 exhibit the lowest SNR values, representing measurements
under significant multipath or NLOS conditions. These clusters likely reflect signals heavily
influenced by reflections or obstructions, common in urban or obstructed environments.
This clear distinction between clusters based on SNR and elevation is crucial for interpret-
ing signal quality, as it allows us to classify measurements effectively for further use in
positioning algorithms.
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Figure 4. Visualization of multiple features across different GNSS data relationships, grouped by
cluster.

3.2. Scenario Analysis with Clusters Data

As a final result, we analyze a scenario with the KMeans output of 5 clusters, covering
conditions from open sky to urban environments. In Figure 5, we observe the changing
scenario conditions based on the model interpretation. In the first static phase, clusters 0
(blue) and 4 (purple) show fewer measurements, as expected in a semi-urban environment
where GNSS signals are relatively strong due to favorable satellite geometry, minimizing
multipath and interference under LOS conditions.

Next, in the cyan phase, which combines highway and semi-urban environments,
the number of measurements varies across clusters due to changing obstructions in the
environment. Highways provide better signal reception than semi-urban areas, causing
fluctuations in cluster distribution. In the following navy phase, representing an urban
area with wide streets, Cluster 3 (red) remains consistent, indicating better reception from
high-elevation satellites, where obstacles have less impact on signal quality.

In contrast, the gray phase, representing a deep urban environment with narrow
streets, shows an increase in Cluster 4 (purple), reflecting signals affected by multipath,
while Cluster 1 (orange), associated with medium-elevation satellites, remains stable. Two
subzones within this urban area, marked in teal (a large avenue) and olive (parks and low
buildings), provide more open environments, improving signal reception, as seen in the
rise of Cluster 2 (green), where satellites with good SNR and lower elevation dominate due
to fewer obstructions.



9 of 10

Returning to the gray deep urban environment, narrow streets reduce the number of
Cluster 1 (orange) measurements, indicating further occlusion. In the final phases (navy
and cyan), signal reception improves again, reflecting more measurements from high-
elevation satellites with strong SNR. Despite similar environmental conditions at different
points, there are notable variations in the number of measurements within the same cluster,
attributable to changes in both satellite and environment geometry. This highlights that
GNSS signal interpretation relies not only on the type of environment but also on satellite
positioning and availability at specific times.
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Figure 5. (a) KML reference positioning (b) Visualization of the variation of cluster assignment to
measurements over a GNSS scenario.

4. Discussion

The results demonstrate how the use of AI in GNSS can be beneficial, in this case
by helping in the detection of multipath problem in complex environments. Satisfactory
clustering of observations at the positioning algorithm level is observed, with a correlation
consistent with the expectations. The approach makes this system an agnostic solution to
the GNSS receiver in use, making it independent of its model or its quality, although some
extra training could be needed.

By applying the model to a particular scenario we can appreciate the nature of that
scenario with more detailed information, making it possible for future systems to make
use of this information as an additional input for calculating an accurate position. In this
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paper we have tried to go beyond the analysis and improve the position of the PPP based
on this clustering. The approach chosen has been to modify the weights that are given to
each measurement before entering the extended Kalman filter (EKF) of GSharp PPP. This
process is outside the scope of this paper and the further experimentation will be carried
out with the goal to mitigate the impact of measurements with multipath in the positioning
obtained by the GSharp PPP.

However, despite the advances presented in this study on understanding and detecting
the multipath effect in GNSS signals, complete mitigation remains a complex challenge.
Further research is required to determine the most effective mitigation strategies. This paper
opens the way for more complex Al models, such as Deep Learning (DL) or Reinforcement
Learnign (RL), in order to correctly and accurately adjust the weights of the measurements,
avoiding the error that we can induce with our interpretation.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

CHI Calinski-Harabasz Index

CMC  Code-Minus-Carrier

CNN  Convolutional Neural Network
CRC Code Rate Consistency

DBI Davies—-Bouldin Index

DL Deep Learning

DLL Delay Lock Loop

DR Dead Reckoning

EKF Extended Kalman Filter

GNSS  Global Navigation Satellite Systems
LOS Line-Of-Sight

ML Machine Learning

NLOS Non Line Of Sight

prpr Precise Point Positioning

RL Reinforcement Learning

SNR Signal-To-Noise Ratio
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