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Abstract: In this paper, Flare Bright presents flight test results gathered using a ~2m fixed wingspan 

drone to demonstrate the capability that has been achieved using an Inertial Navigation System 

(INS) augmented by Machine Learning tuned software. INSs, using Inertial Measurement Units 

(IMUs), are invaluable for position estimation in GNSS-compromised environments as no external 

information is required. However, with no absolute measurement of a vehicle’s position or attitude, 

INSs suffer from significant drift over time. The results from a robust flight test programme, over 

multiple vehicles, terrains and flight paths, show how Flare Bright combined a low cost and low 

SWaP (space, weight and power) IMU, with their patent pending software-only techniques, to boost 

INS performance to the degree of besting a ‘tactical grade’ IMU in ~20 minutes. These results 

credibly demonstrate the value of Flare Bright’s solution as an effective, low cost and low weight, 

INS for extended flight operations of small uncrewed aerial systems in GNSS-compromised 

environments, with performance comparable to heavier, more expensive high-end IMUs. 
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1. Introduction 

Flare Bright has developed a patent pending Machine Learning (ML) augmented 

software system that boosts the performance of simple and inexpensive Inertial 

Measurement Units (IMUs) for use within Uncrewed Aerial Systems (UAS) – Flare 

Bright’s Software Enhanced Navigation System (SENS). 
IMUs, composed of three-axes gyroscopes and accelerometers, are the foundation of 

Inertial Navigation Systems (INSs) across the aviation industry, with measured angular 

velocity and linear acceleration data used to estimate the aircraft’s position and 

orientation from a known starting state [1]. INS is ‘self-contained’ [1], in that the system 

neither transmits nor receives any external signals. This makes INS an invaluable 

redundant system for UAS, and other aircraft, when Global Navigation Satellite System 

(GNSS) signals, typically used as the primary navigation system on aircraft, are lost, 

interfered with or spoofed [2] – note, GNSS is used here to refer to any satellite-based 

navigation system.   
UAS are increasingly being deployed in GNSS-denied environments, whether in 

defence contexts in conflict zones or commercially for operation indoors, such as within 

warehouses or tunnels, or in urban canyons where the presence of buildings can shield 

signals [2-4]. In the absence of GNSS signal, default operation reverts to an automated 

‘return to home’ functionality or necessitates manual control [2], greatly limiting UAS use 

cases with GNSS denial increasingly responsible for accidents within the industry [5]. As 

UAS use increases [6], and GNSS-denial threats start to extend across the aviation industry 

beyond specific operation in known GNSS-denied use cases [7], there is a need for 

capabilities that enable accurate in-flight position tracking in the absence of GNSS signal, 

or indeed any radio communications. 
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An INS using IMUs alone cannot meet this requirement due to significant navigation 

position drift over time. This occurs as there is no absolute measurement of the aircraft’s 

position or attitude, resulting in sensor inaccuracies creating navigation errors that cannot 

be corrected [1, 4] – due to the mathematical integration required, the navigation position 

growth rate is at least quadratic with time, and in practice typically cubic or higher due to 

the fusion of gyroscope data with accelerometers [1]. High-end ‘navigation-grade’ IMUs 

(see [8] for definitions of different IMU grade classifications), deployed on large aircraft, 

provide the accuracy required over practical flight scenarios, but are too expensive, heavy 

and power hungry to meet the requirements of many, particularly smaller, UAS. Visual 

navigation systems such as SLAM, integrated with an IMU, provide a means of correcting 

for IMU drift, but in turn have limited accuracy in visually homogeneous or degraded 

environments, rely on camera quality, can be computationally intensive and adversely 

impacts weight and power requirements of the sensing unit [4].  
At last year’s ENC conference, Flare Bright introduced the novel SENS concept, 

supported by preliminary flight test data on a small prototype test-bed [9]. In this current 

paper, Flare Bright will present extensive and varied flight test results to demonstrate the 

credibility of its software solution deployed on an aircraft not designed or controlled in-

house. The range, and limitations, of tests conducted will be introduced and the flight test 

data will be analysed to show the performance achieved in real world deployment of 

SENS. Results will be compared with past performance achieved on a different platform 

and will be commercial contextualised by comparing the performance of recognised, 

widely used, high-end inertial sensors. In this way, the paper will demonstrate how Flare 

Bright’s SENS may be applied to low cost and low SWaP (size, weight and power) IMUs 

to provide a pure INS solution (i.e. no visual or other alternative navigation solution) with 

a degree of accuracy appropriate for extended flight operations for small UAS.  

2. Methodologies 

This section will cover the core technology understanding required for the flight test 

analysis. It will also introduce the platform used for this series of tests, the deployment 

strategy employed for SENS and the data collected for the performance assessment. 

2.1 Overview of Flare Bright’s SENS Technology 

An INS is composed of a sensor, i.e. the IMU, and a computational unit that performs 

the necessary calculations, typically through the use of Kalman filters, to estimate position 

and attitude [1, 9].  
Like any INS, SENS too relies on tuned computational algorithms, including Kalman 

filters. In addition, SENS relies on core Flare Bright, patent pending, technologies 

including a highly exquisite, ML optimised, Digital Twin (DT) of the platform and a flow-

based estimation and navigation algorithm. The DT is at the heart of Flare Bright’s 

technology, enabling rapid tuning of the algorithms for optimal performance, and, when 

embedded on board the aircraft, enabling a simulated understanding of how the vehicle 

should fly to be interrogated during flight. The core SENS algorithms critically are 

designed to operate in the absence of GNSS data streams. 

Flare Bright uses a physics-based approach to generate DTs. First, a “modelling” 

stage is used to create a baseline twin based on design or bench test measured data. 

Second, a “calibration” stage is conducted where flight tests exploring various 

manoeuvres, such as rotations in each axis and (de)accelerations, are completed. Only a 

few seconds of data for each manoeuvre has been found sufficient to use ML to tune the 

DT to a point where it has been verified to perform as an accurate representation to the 

real-world platform in simulation.  
Details of the proprietary core SENS algorithms are beyond the scope of this paper 

due to commercial sensitivity. Importantly, like any INS, SENS is baselined and optimised 

‘offline’ and does not employ any ML during flight. This enables the SENS performance 

to be deterministic, at a given software release version, for a given set of sensor readings. 
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Note, where this work refers to generic INS results as comparisons against SENS 

data, the INS data is generated using the same optimised Kalman Filters as SENS. 

2.2 Flight Test Platform 

The UAS platform used for this flight test programme is CATUAV’s ATMOS-8, 

pictured in Figure 1. This is a 2m fixed wingspan aircraft, with a maximum take-off weight 

of 3.3kg. The flight controller deployed on the platform is a Cube Orange [10], and the 

aircraft is equipped with a Raspberry Pi 3b [11] to enable test software to be deployed on 

the vehicle for the purposes of research activities. No cameras or visual systems were 

installed on the platform during this flight programme. Two aircraft were built to enable 

robust reliability testing of SENS performance by comparing results between the vehicles.     

 

Figure 1. The two CATUAV ATMOS-8 platforms used as flight test demonstrators for this work.  

2.3 Deployment of SENS on the Test Platform 

The ideal SENS deployment is as a software only package, integrated directly into a 

flight controller for the platform. However, for this to happen, the flight controller is 

required to have a Linux based OS with suitable processing and RAM capabilities. Since 

the Cube series is based around a microcontroller, this type of deployment is not possible. 

Instead, Flare Bright deployed SENS onto the Raspberry Pi 3b, which was already 

available on the ATMOS-8 as a companion computer to the Cube Orange. 
Note, for the duration of this test programme, SENS was operated in a “passive” or 

“sandboxed” mode. This means that while SENS received all the data required to produce 

a navigation solution, it did not return that solution to the Cube Orange. It simply logged 

the input data and resultant navigation solution for analysis after the flight.  

2.4 Approach to Flight Test Data Gathering 

The test programme was conducted in a partnership with BCN Drone Center, who 

are based out of Barcelona, Spain. BCN Drone Center operates an airfield for various 

drone testing requirements and are also the hosts of the ATMOS-8 platform. This test 

programme had two different flight areas; BCN Drone Center itself and over the sea near 

Platja de Murta, Barcelona. The over sea flights were specifically chosen to showcase SENS 

working in a situation visual navigation would fail - a featureless ocean surface. Note, for 

the purposes of this work, the UAS was flown under specific EASA permissions granted 

to Flare Bright collaborators, BCN Drone Centre. 
The planned flight paths for these locations are shown in Figure 2. The paths 

presented are just representations of the real flight paths, since these required translation 

into orbit or waypoint missions when plotted in the GCS software used to manage the 

Cube Orange. Each test was conducted at ~40m AGL, where ground level was defined as 

the runway for tests at BCN Drone Center and the sea level for tests at the beach. Due to 

regulatory restrictions, no jamming or spoofing of GNSS was active during flights, which 

means GNSS data (provided by a standard Here2 module) was available for autonomous 

navigation and ground truthing, while SENS was run ‘sandboxed’ logging its position 

estimate separately. Flights were conducted with cruising speeds of ~17m/s and varied in 

time from ~15 minutes through to just over an hour. The flights formally included as part 

of the test programme were made up of 6x orbits, 4x race tracks and 4x over sea flights. 
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(a) (b) (c)  

Figure 2. Layouts of automated flight paths flown during the test programme: (a) Orbits: A 300m 

orbit (blue); (b)Racetracks: A racetrack formed from 1.5km long stretches spaced 200m apart (blue); 

(c) Over-sea: Flight path (purple) constrained by regulatory limits to the extended visual line of sight 

activity over the Mediterranean Sea near Sant pol de Mar. 

At the time these tests were conducted, SENS only used a single 9 axis IMU data 

stream (comprised of a 3-axis accelerometer, 3 axis gyroscope and 3 axis magnetometer) 

from the Cube Orange. Additionally, the foundational DT that enables SENS was also 

updated with messages relevant to the current state of the control surfaces and thruster. 

While IMU and actuator state data is the only required baseline input to SENS, and SENS 

can function with just that data, the navigation performance can be boosted further by 

also consuming a variety of other common sensors, such as a pitot tube which was used 

on the ATMOS-8. Wherever possible, Flare Bright also collects atmospheric data during 

tests, both to understand any errors that may come up and to aid in the recreation of the 

flight tests in simulation if required. BCN Drone Center, where most tests were conducted, 

had a weather station that could record wind speed and direction, temperature, 

atmospheric pressure and humidity. 

3. Flight Tested Performance Assessment 

This section will explore the SENS performance across a variety of flight times, flight 

paths and aircraft. The focus of this assessment will be to confirm a key performance 

characteristic of SENS: the ability to take the normally quadratic, or worse, navigation 

error growth of an inertial navigation system, and replace it with an approximately linear 

error growth. “Navigation error” is defined as the difference between an alternative 

navigation solution’s position estimate (either that of SENS or the pure INS result), and 

the “ground truth” position given by the Here2 GNSS module.  
Historically, Flare Bright has attempted to demonstrate the performance of SENS by 

comparing it to a pure INS solution with identical input data [9]. This was a useful 

comparison since most flight times were in the 1-5 minute range, where the INS 

performance, for the baseline low-cost consumer grade IMUs used, would be reaching its 

absolute limits. SENS could then showcase how it overcomes those performance 

limitations and enable a platform to survive a GNSS dropout for that length of time.  
 Figure 3 shows a plot like this for one of the hour-long flights conducted during 

these trials. While this remains a useful plot to show the scale of improvement SENS can 

achieve (in this case a factor of ~2700 over the baseline INS solution), ultimately over the 

flight times seen in this series of tests, it's not a fair or realistic plot; if the 1-5 minute flights 

conducted historically were going beyond normal INS capabilities, comparing it over an 

hour-long flight becomes entirely meaningless. The scales required for these plots are also 

misleading as, in comparison to the higher than quadratic error growth observed with by 

the baseline IMU, SENS appears to have no growth in navigation error, which is incorrect. 
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For the remainder of this paper, INS results in this form will be disregarded for the 

baseline low-cost IMU and the SENS performance will be analysed in isolation. 

 

Figure 3. SENS navigation error (orange) compared to the baseline INS navigation error (blue) over 

an hour-long flight. Due to the nature of error accumulation, the INS error grows rapidly, at 

quadratic (or higher) rates, to values that are no longer credible. The SENS solution negates this 

effect. 

To provide a credible value offering, the SENS capability must be repeatable across 

different conditions, including flight times, flight paths and aircraft. Figures 4-6 will 

examine these cases by plotting the SENS navigation error growth from flight test data 

(blue) against flight time. Three factors, seen in these figures, are considered important 

when examining the ability of SENS to linearise error growth:  
• Firstly, a line of best fit, calculated using standard linear regression, will be 

superimposed, in red, onto each plot of flight test data. This will confirm linear error 

growth. 

• Secondly, the gradient of the line of best fit, which can be found in the graph legends, 

are not quite identical across any flight – this is discussed later in the section.  

• Finally, each graph shows a minor oscillation pattern, the shape of which is believed 

to be determined by flight path and the effect of flying into varying wind conditions. 

  

Impact of flight time: Figure 4 shows a comparison of two orbiting flight paths (see 

Figure 2a) of different flight times, 17 minutes and 35 minutes respectively. Superimposed 

in red is a linear regression-based line of best fit. Figure 4 very clearly shows that, 

irrespective of flight time, the navigation error growth when SENS is used can be 

approximated to a linear line of best fit. The oscillations in nav growth are clearly visible 

in the result, and, although not exactly periodic, represent a simplistic repeating pattern 

that is approximately consistent with the orbit period.  

Impact of flight path: Figure 5 shows an orbit flight path (see Figure 2a) and a 

racetrack flight path (see Figure 2b). These flights were 66 minutes and 61 minutes 

respectively. Figure 5 very clearly shows that, irrespective of flight path, the navigation 

error growth when SENS is used can be approximated to a linear line of best fit. The 

oscillations in navigation error growth are also clearly visible in the result. In Figure 5, 

due to the difference in flight path, the periodicity associated with the error growth 

oscillation appears different, but this does not have a quantifiable impact on the overall 

linear growth rate. Note, in this particular case, the gradient of the line of best fit is 

remarkably similar. Note also, by comparing Figure 5a with Figure 4, it is clear that even 

increasing flight time to an hour does not impact the overall linear approximation to 

navigation error growth. 

Impact of changing vehicles: Figure 6 shows a 34-minute orbit completed with a 

second ATMOS-8 platform. This can be compared with Figure 4b, which showed a similar 
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35-minute orbiting flight with the first platform. In both cases, the linear error growth is 

evident. On similar time scales, it is clear that the oscillation observed in the raw flight test 

results (blue) for both figures are the same, as would be expected given the aircraft were 

completing similar flight paths, albeit on different flight test days. It is possible to further 

assess cross platform consistency by comparing the current results with that from Flare 

Bright’s preliminary flight test assessment whitepaper [9], where similar results were 

shown with a hobbyist flying wing UAS. The results confirm that the SENS linear error 

growth characteristic is consistent across entirely different platforms, including simplistic 

prototype UAS without additional sensors like the pitot tube. 

 

  
(a) (b) 

Figure 4. SENS navigation position error estimates over flight time (scales different for different 

flight times), with linear regression superimposed (red line) (a) 17 minute flight; (b) 35 minute flight.  

  
(a) (b) 

Figure 5. SENS navigation position error estimates versus flight time, shown for ~1 hour long flights 

over different flight paths, with linear regression superimposed (red line) (a) Orbit; (b) Racetrack. 

Holistic view: Figure 7, collates the navigation error growth rates for all flights in 

this test programme as a function of flight time. This is plotted against the expected 

performance of SENS based on simulations that use the DT created for the model to 

fly.  The simulations were conducted in representative conditions, e.g. matching wind 

speeds, pressures, even as far as matching the angles of the magnetic fields of the area the 

real flight tests were conducted in. Since there are too many simulation points to 

reasonably plot, the data is shown as the mean and 95th percentile error growth rates. 

Note, a discussion around Flare Bright’s simulation capabilities is beyond the scope of this 

paper but a high level summary may be found in [9]. It can be seen that 3 flight test results 

lie almost exactly on the simulated mean line. The remaining results form a roughly even 
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distribution about the mean. This shows two distinct facts; first, the results from this test 

programme are very consistent, with a standard deviation of ~1.22m/s; second, the 

simulator’s prediction of in-flight SENS performance was very accurate, demonstrating 

the value of highly exquisite DTs for real world capability assessment. 

 

Figure 6. SENS navigation position error estimate versus flight time, shown for ~30 minute flight 

flown using the second ATMOS-8 aircraft, with linear regression superimposed (red line).  

 

Figure 7. Flight data plotted in terms of linear error growth gradient against flight time, with results 

from hundreds of corresponding simulations superposed as mean and 95th percentile lines (red).  

While flight test results and simulation line up, the spread of both is higher than ideal. 

Flare Bright has investigated the error sources that contribute to variations in error growth 

rates, using both simulation and flight test, and are actively addressing them as part of 

current projects. While a detailed discussion is beyond the scope of this paper, it is worth 

noting that algorithmic tuning, optimisation of the underpinning Digital Twin and 

making use of multiple IMUs (such as available on the Cube Orange), to reduce the impact 

of single sensor bias, are all means of achieving this aim.  

4. How can SENS revolutionise the UAS industry? 

The Flare Bright SENS value proposition is based around significantly boosting the 

INS performance of a low cost (~$5) and low SWaP consumer grade IMU. Figure 8 shows 

a SENS 1 hour long flight test result resulting in ~7km navigation error, which is 

representative of the average performance achieved over the flight test programme. In 

comparison, Figure 8 also shows the simulated performance of an INS-only system with 

a ~$10k tactical grade IMU (purple) and ~$100k navigation grade IMU (red), 

representative of the advertised performance of the HG1930 [12] and HG9900 [13] 

respectively - the navigation error after an hour is ~19km and ~1.5km with these IMUs 
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respectively. For details of the approach to simulating the INS-only performance refer to 

[9].  

 

Figure 8. Typical SENS flight test navigation error result from a 1 hour long race track flight (blue), 

shown in comparison with simulated INS performance results using a tactical grade IMU (HG1930) 

in purple and a navigation grade IMU (HG9900) in red. Flare Bright’s SENS solution outperforms 

the HG1930 after ~20mins flight time and provides a performance comparable to the gold-standard 

HG9900 after an hour despite the sensor costing orders of magnitude less. 

The key take-home message from Figure 8 is that, for a typical SENS flight, a ~$5 IMU 

+ SENS combination starts outperforming the $10k IMU after ~20 minutes of flight time, 

referred to as the ‘crossover’ point. The best flight test results presented in this paper 

(0.77m/s error growth) indicate a crossover point within 10 minutes into GNSS-free flight, 

which, if consistent, would open up significant commercial opportunity. For the 

representative SENS flight shown, the ~$100k HG9900 IMU [13] outperforms SENS 

throughout the hour-long timeframe. However, as the various error sources contributing 

to the SENS error growth are further understood and solved, initial, simulation based, 

projections are that SENS can consistently hit the sub 1m/s error growth range, meaning 

~2km - 3km error after an hour - approaching the performance of a $100k IMU using just 

a ~$5 IMU. In a market where the IMU alone must not cost as much as the rest of the drone 

itself, and drones have limited payload, the results presented in this paper are very 

significant. 

5. Conclusions 

Flight test results of Flare Bright’s GNSS-free SENS have been presented and 

demonstrated the current capability achieved by deploying the software-only solution 

with a consumer grade IMU on a ~2m fixed wingspan drone. The results from these flights 

demonstrate a consistent ability to linearise navigation error growth across a variety of 

flight times, flight paths and platforms.  

The results have indicated an average performance of ~2m/s navigation error growth 

observed, with results across the flight test programme showing a standard deviation of 

~ 1.22m/s. This performance was predicted using Flare Bright’s Digital Twin simulation 

capability, highlighting the value of Flare Bright’s approach in using virtual environments 

for capability test/development and performance prediction. Using simulation, Flare 

Bright is on track to reduce both the average and standard deviation values further.  

With this current average flight performance, the paper demonstrates that SENS 

combined with the ~$5 consumer grade IMU outperforms the equivalent INS only 

performance using a ~$10k tactical grade IMU (HG1930) within 20mins and has a similar 

order of magnitude navigation error as a ~$100k navigation grade IMU (HG9900) after an 

hour. These results demonstrate that it is possible to reduce the size, weight, and power 

requirements of an inertial navigation system, without compromising on navigation 
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accuracy, by using SENS with a low-end IMU. Therefore, as a software only solution, 

SENS is a route to providing true redundancy and GNSS-jammed navigation capability 

on a wide range of UAS without adding significant size, weight, power or cost penalties. 

6. Patents 

Relevant Flare Bright patents include “Fluid flow estimation and navigation” filed 

on 25 August 2022 and “Digital Twin for an Autonomous Vehicle” filed on 10 Sep 2021.  
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https://aerospace.honeywell.com/us/en/products-and-services/product/hardware-and-systems/sensors/hg9900-inertial-measurement-unit
https://aerospace.honeywell.com/us/en/products-and-services/product/hardware-and-systems/sensors/hg9900-inertial-measurement-unit
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